Search results for "temaattinen analyysi"

showing 10 items of 12 documents

Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups

2020

This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…

01 natural sciencesmatemaattinen analyysiCombinatoricsCorona (optical phenomenon)Mathematics - Metric Geometry0103 physical sciencesHeisenberg groupClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsCommutative propertyPhysicsApplied MathematicsHeisenberg groups010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityGraphcorona decompositionMathematics - Classical Analysis and ODEs35R03 26A16 28A75low-dimensional intrinsic Lipschitz graphs010307 mathematical physicsmittateoriaLipschitz extension
researchProduct

Fourier-sarjoista ja -muunnoksesta

2015

Fourier-muunnosFourier'n sarjatFourier-sarjatmatemaattinen analyysi
researchProduct

Plenty of big projections imply big pieces of Lipschitz graphs

2020

I prove that a closed $n$-regular set $E \subset \mathbb{R}^{d}$ with plenty of big projections has big pieces of Lipschitz graphs. This answers a question of David and Semmes.

General Mathematics010102 general mathematicsprojectionMetric Geometry (math.MG)Lipschitz continuity01 natural sciencesprojektiomatemaattinen analyysiCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometrymittateoria010307 mathematical physics0101 mathematicsMathematicsInventiones mathematicae
researchProduct

Loomis-Whitney inequalities in Heisenberg groups

2021

This note concerns Loomis-Whitney inequalities in Heisenberg groups $\mathbb{H}^n$: $$|K| \lesssim \prod_{j=1}^{2n}|\pi_j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb{H}^n.$$ Here $\pi_{j}$, $j=1,\ldots,2n$, are the vertical Heisenberg projections to the hyperplanes $\{x_j=0\}$, respectively, and $|\cdot|$ refers to a natural Haar measure on either $\mathbb{H}^n$, or one of the hyperplanes. The Loomis-Whitney inequality in the first Heisenberg group $\mathbb{H}^1$ is a direct consequence of known $L^p$ improving properties of the standard Radon transform in $\mathbb{R}^2$. In this note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg groups can be deduced…

Mathematics - Classical Analysis and ODEsSobolev inequalityClassical Analysis and ODEs (math.CA)FOS: Mathematicsmittateoria28A75 52C99 46E35 35R03isoperimetric inequalityepäyhtälötfunktionaalianalyysiLoomis–Whitney inequalityHeisenberg groupRadon transformmatemaattinen analyysi
researchProduct

Rectifiability of RCD(K,N) spaces via δ-splitting maps

2021

In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed

Pure mathematicsTangent coneOrder (ring theory)Differential calculusRCD spaceArticlesMathematical proofmetriset avaruudetMeasure (mathematics)matemaattinen analyysidifferentiaaligeometriaConvergence (routing)Metric (mathematics)Mathematics::Metric GeometryRectifiabilityEssential dimensionMathematicstangent cone
researchProduct

Luova toiminta hermeneuttisena horisonttina : Kevin J. Vanhoozerin käsitys draamasta, eettisestä kasvusta ja oppimisesta

2018

The aim of this research is to analyze Kevin J. Vanhoozer’s theory of creative action as a hermeneutical viewpoint in the light of learning and ethical development. The method used in this research is systematic analysis. Vanhoozer’s understanding of action differs strongly from that of Marx and of Dewey. By turning to philosophical hermeneutics he finds a way through Aristotle’s drama theory where creative action is a basis for the Gadamerian horizon, but instead of fusing the horizons Vanhoozer sees it as the viewpoint of Bakhtinian outsider, which in turn provides an opportunity to critique the surrounding culture. The horizon becomes wider and clearer through improvisation and spontanei…

epistemologyhermeneuticsethicsimitationSystemaattinen analyysimielikuvitushermeneutiikkapragmatiikkamimesisluovuusactionluova toimintaetiikkaVanhoozer Kevin Jimaginationpragmatics
researchProduct

D3 Dihedral Logistic Map of Fractional Order

2021

In this paper, the D3 dihedral logistic map of fractional order is introduced. The map presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation of the bifurcation diagram versus the fractional order requires special attention. The system stability is determined and the problem of hidden attractors is analyzed. Furthermore, analytical and numerical results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry in the fractional-order variant.

kaaosteoriaGeneral Mathematicscomputational_mathematicscaputo delta fractional differencedihedral symmetry <i>D</i><sub>3</sub>attraktoritmatemaattinen analyysiNonlinear Sciences::Chaotic DynamicsbifurkaatioQA1-939Computer Science (miscellaneous)dihedral symmetry D3dynaamiset systeemitEngineering (miscellaneous)Mathematicsdiscrete fractional-order systemdiscrete fractional-order system; caputo delta fractional difference; hidden attractor; dihedral symmetry <i>D</i><sub>3</sub>hidden attractor
researchProduct

A remark on two notions of flatness for sets in the Euclidean space

2021

In this note we compare two ways of measuring the $n$-dimensional "flatness" of a set $S\subset \mathbb{R}^d$, where $n\in \mathbb{N}$ and $d>n$. The first one is to consider the classical Reifenberg-flat numbers $\alpha(x,r)$ ($x \in S$, $r>0$), which measure the minimal scaling-invariant Hausdorff distances in $B_r(x)$ between $S$ and $n$-dimensional affine subspaces of $\mathbb{R}^d$. The second is an `intrinsic' approach in which we view the same set $S$ as a metric space (endowed with the induced Euclidean distance). Then we consider numbers ${\sf a}(x,r)$'s, that are the scaling-invariant Gromov-Hausdorff distances between balls centered at $x$ of radius $r$ in $S$ and the $n$-dimensi…

matematiikkaMathematics - Metric GeometryMathematics - Classical Analysis and ODEsApplied MathematicsGeneral Mathematicseuklidinen geometriaClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric GeometryMetric Geometry (math.MG)matemaattinen analyysi
researchProduct

Regularity properties of maximal operators

2008

matematisk analysmatemaattinen analyysi
researchProduct

Mappings of finite distortion : removable singularities

2003

mathematical analysismatemaattinen analyysi
researchProduct